Ethics Implications of Irreproducibility

AGU - AI/ML Ethics Workshop Series - 2022 Kevin Coakley - SDSC/NTNU Christine Kirkpatrick - SDSC

Overview

- Reproducibility and sources of irreproducibility
- Case study: reproducibility exploration using the Open Science Grid
- Implications of variance
- Takeaways

COMPUTER SCIENCE

Artificial intelligence faces reproducibility crisis

Unpublished code and sensitivity to training conditions make many claims hard to verify

Hutson, Matthew. "Artificial Intelligence Faces Reproducibility Crisis." Science, vol. 359, no. 6377, Feb. 2018, pp. 725–26. DOI.org

What is Reproducibility?

- Confusion between:
 - Repeatability (10x)
 - Replicability
 - Reproducibility

- \leftarrow repeat on same infra yourself / reproduce independently \rightarrow
 - Definitions can differ between scientific disciplines.
 - Definitions can change over time as the literature evolves.

The Scientific Method

Perhaps a better way to think of reproducibility to examine the scientific method:

The scientific method as a ten step process: 1) observe the world to form beliefs about it; 2) explain causes and effects by forming a scientific theory; 3) formulate a genuine test of the theory; 4) design an experiment to test the theory; 5) implement the experiment; 6) conduct the experiment; 7) analyse the outcome; 8) interpret the analysis; 9) update beliefs according to the result; and 10) observe the world systematically.

Gundersen, Odd Erik. "The Fundamental Principles of Reproducibility." ArXiv:2011.10098 [Cs], Nov. 2020. arXiv.org,

Sources of Irreproducibility Implementation Factors

- Initialization seeds
- Ancillary software
- Ancillary software version
- Bugs in software
- Non-deterministic ordering of floating-point operations
- Parallel execution
- Compiler settings
- Processing unit

Gundersen, Odd Erik, Kevin Coakley, and Christine Kirkpatrick. "Sources of Irreproducibility in Machine Learning: A Review." *arXiv preprint arXiv:2204.07610* (2022)

What Can Be Done?

Not all sources of irreproducibility can be controlled for.

However, many of the sources of irreproducibility can be examined by performing multiple runs in heterogeneous computing environments consisting of different hardware and software environments.

The biggest challenge for researchers can be getting access to multiple heterogeneous computing environments.

Sources of Irreproducibility Implementation Factors

- Initialization seeds
- Ancillary software
- Ancillary software version
- Bugs in software
- Non-deterministic ordering of floating-point operations
- Parallel execution
- Compiler settings
- Processing unit

Gundersen, Odd Erik, Kevin Coakley, and Christine Kirkpatrick. "Sources of Irreproducibility in Machine Learning: A Review." *arXiv preprint arXiv:2204.07610* (2022)

Open Science Grid

- Distributed High-Throughput Computing
 - For problems that can be run as numerous and self-contained jobs
- Supports Machine Learning and AI executed with Multiple Independent Training Tasks, Different Parameters, and/or Data Subsets
- More than 20 Institutions Participating
- Uses HTCondor Batch Scheduler
 - Run Non-Interactively
 - Uses Bash Scripts to Setup Environment and Copy Output

• Free to qualifying researchers: https://www.osgconnect.net

Keras Examples Used

Computer Vision

 Simple MNIST convnet: https://github.com/keras-team/keras-io/blob/master/examples/vision/mnist_convnet.py

Natural Language Processing

• Bidirectional LSTM on IMDB: https://github.com/keras-team/keras-io/blob/master/examples/nlp/bidirectional_lstm_imdb.py

Structured Data

 Imbalanced classification: credit card fraud detection: https://github.com/keras-team/keras-io/blob/master/examples/structured_data/imbalanced_clas sification.py

Examples were modified to run deterministically

https://www.tensorflow.org/api_docs/python/tf/config/experimental/enable_op_determinism

Using Open Science Grid Servers The job was configured with:

- Various CPUs (4 threads)Various GPUs (1 GPU)

TensorFlow

- Singularity containers based on Docker containers:
 - tensorflow/tensorflow:2.9.1-gpu (via TensorFlow)
 - nvcr.io/nvidia/tensorflow:22.06-tf2-py3 (via Nvidia)

The placement of what hardware the jobs ran on was not controlled.

30 tests ran on 2 different sites and 8 different servers.

Hardware included Intel Xeon and AMD EPYC CPU and NVidia A40 & A100 GPUs.

The same 3 Karas examples were used and each example was ran 5 times to ensure repeatability. The accuracy from the imbalance example and the mnist example were repeatable on the same hardware. The following heat map shows the accuracy of these two examples:

imbalanced_classification and mnist_convnet set_random_seed GPU Runs

Server	GP-ARGO-langston:NVIDIA A100-40GB:tensorflow_22.06	0.9880971312522888	0.9918000102043152
	GP-ARGO-usd:NVIDIAA100-40GB:tensorflow 22.06	0.9880971312522888	0.9918000102043152
	GP-ARGO-oru:NVIDIA A100-40GB:tensorflow 22.06	0.9880971312522888	0.9918000102043152
	GP-ARGO-langston:NVIDIA A100-40GB:tensorflow 22.06	0.9880971312522888	0.9918000102043152
	GP-ARGO-sdsu:NVIDIA A100-40GB:tensorflow_22.06	0.9880971312522888	0.9918000102043152
	GP-ARGO-ku:NVIDIA A100-40GB:tensorflow_22.06	0.9880971312522888	0.9918000102043152
	GP-ARGO-uark:NVIDIA A100-40GB:tensorflow_22.06	0.9880971312522888	0.9918000102043152
	Rice-RAPID:NVIDIA A40:tensorflow_22.06	0.9949439167976379	0.9918000102043152
	Rice-RAPID:NVIDIA A40:tensorflow_22.06	0.9949439167976379	0.9918000102043152
	Rice-RAPID:NVIDIA A40:tensorflow 22.06	0.9949439167976379	0.9918000102043152
	Rice-RAPID:NVIDIA A40:tensorflow_2.9.1-gpu	0.9906251430511475	0.9918000102043152
	Rice-RAPID:NVIDIA A40:tensorflow_2.9.1-gpu	0.9906251430511475	0.9918000102043152
	Rice-RAPID:NVIDIA A40:tensorflow_2.9.1-gpu	0.9906251430511475	0.9918000102043152
	Rice-RAPID:NVIDIA A40:tensorflow_2.9.1-gpu	0.9906251430511475	0.9918000102043152
	Rice-RAPID:NVIDIA A40:tensorflow_2.9.1-gpu	0.9906251430511475	0.9918000102043152
	Rice-RAPID:NVIDIA A40:tensorflow_2.9.1-gpu	0.9906251430511475	0.9918000102043152
	Rice-RAPID:NVIDIA A40:tensorflow_2.9.1-gpu	0.9906251430511475	0.9918000102043152
	Rice-RAPID:NVIDIA A40:tensorflow_2.9.1-gpu	0.9906251430511475	0.9918000102043152
	Rice-RAPID:NVIDIA A40:tensorflow_2.9.1-gpu	0.9906251430511475	0.9918000102043152
G	Rice-RAPID:NVIDIA A40:tensorflow_2.9.1-gpu	0.9906251430511475	0.9918000102043152
	Rice-RAPID:NVIDIA A40:tensorflow_2.9.1-gpu	0.9906251430511475	0.9918000102043152
	Rice-RAPID:NVIDIA A40:tensorflow_2.9.1-gpu	0.9906251430511475	0.9918000102043152
	Rice-RAPID:NVIDIA A40:tensorflow_2.9.1-gpu	0.9906251430511475	0.9918000102043152
	Rice-RAPID:NVIDIA A40:tensorflow_2.9.1-gpu	0.9906251430511475	0.9918000102043152
	Rice-RAPID:NVIDIA A40:tensorflow_2.9.1-gpu	0.9906251430511475	0.9918000102043152
	GP-ARGO-oru:NVIDIA A100-40GB:tensorflow_2.9.1-gpu	0.9922052025794983	0.9922000169754028
	GP-ARGO-langston:NVIDIA A100-40GB:tensorflow_2.9.1-gpu	0.9922052025794983	0.9922000169754028
	GP-ARGO-usd:NVIDIA A100-40GB:tensorflow_2.9.1-gpu	0.9922052025794983	0.9922000169754028
	GP-ARGO-ku:NVIDIA A100-40GB:tensorflow_2.9.1-gpu	0.9922052025794983	0.9922000169754028
	GP-ARGO-sdsu:NVIDIA A100-40GB:tensorflow_2.9.1-gpu	0.9922052025794983	0.9922000169754028
		imbalanced classification	mnist convnet

SDSC SAN DIEGO DISCOMPUTER CENTER DISCOMPUTER CENTER

The bidirectional Keras test didn't have repeatable results when trained on GPU hardware with the tensorflow/tensorflow:2.9.1-gpu container.

Determinism on GPU hardware can be difficult. The code and the framework can support determinism but if the ancillary software doesn't support it then the results will include randomness.

The following is a heat map of all 5 runs of all 30 test runs:

	0	4	2	3	4
GP-ARGO-sdsu:NVIDIA A100-40GB:tensorflow 2.9.1-qpu	0.8632799983024597	0.8689600229263306	0.8511599898338318	0.8640800118446350	0.8553599715232849
GP-ARGO-ku:NVIDIA A100-40GB:tensorflow_2.9.1-gpu	0.8680800199508667	0.8500400185585022	0.8637599945068359	0.8516399860382080	0.8610399961471558
GP-ARGO-usd:NVIDIA A100-40GB:tensorflow_2.9.1-gpu	0.8619999885559082	0.8166800141334534	0.8648800253868103	0.8613200187683105	0.8586800098419189
P-ARGO-langston:NVIDIA A100-40GB:tensorflow 2.9.1-gpu	0.8521999716758728	0.8642399907112122	0.8579599857330322	0.8552399873733521	0.8626800179481506
GP-ARGO-oru:NVIDIA A100-40GB:tensorflow_2.9.1-gpu	0.8597999811172485	0.8661999702453613	0.8315600156784058	0.8641200065612793	0.8456400036811829
Rice-RAPID:NVIDIA A40:tensorflow_2.9.1-gpu	0.8685200214385986	0.8543199896812439	0.8555999994277954	0.8573200106620789	0.8597999811172485
Rice-RAPID:NVIDIA A40:tensorflow 2.9.1-gpu	0.8641600012779236	0.8557199835777283	0.8619599938392639	0.8493199944496155	0.8092399835586548
Rice-RAPID:NVIDIA A40:tensorflow 2.9.1-gpu	0.8579599857330322	0.8658800125122070	0.8632799983024597	0.8652399778366089	0.8438400030136108
Rice-RAPID:NVIDIA A40:tensorflow 2.9.1-gpu	0.8363199830055237	0.8628799915313721	0.8389199972152710	0.8572400212287903	0.8527600169181824
Rice-RAPID:NVIDIA A40:tensorflow 2.9.1-gpu	0.8675600290298462	0.8675600290298462	0.8675600290298462	0.8675600290298462	0.8675600290298462
Rice-RAPID:NVIDIA A40:tensorflow 2.9.1-gpu	0.8586000204086304	0.8561199903488159	0.8648800253868103	0.8633199930191040	0.8621199727058411
Rice-RAPID:NVIDIA A40:tensorflow 2.9.1-apu	0.8675600290298462	0.8675600290298462	0.8675600290298462	0.8675600290298462	0.8675600290298462
Rice-RAPID:NVIDIA A40:tensorflow 2.9.1-gpu	0.8638799786567688	0.8600000143051147	0.8575999736785889	0.8620799779891968	0.8352400064468384
Rice-RAPID:NVIDIA A40:tensorflow 2.9.1-gpu	0.8686000108718872	0.8612400293350220	0.8637199997901917	0.8675600290298462	0.8678399920463562
Rice-RAPID:NVIDIA A40:tensorflow 2.9.1-gpu	0.8610799908638000	0.8507199883460999	0.8378000259399414	0.8429200053215027	0.8574000000953674
Rice-RAPID:NVIDIA A40:tensorflow 2.9.1-apu	0.8602399826049805	0.8642799854278564	0.8643199801445007	0.8637199997901917	0.8629199862480164
Rice-RAPID:NVIDIA A40:tensorflow 2.9.1-apu	0.8495200276374817	0.8572800159454346	0.8664399981498718	0.8625199794769287	0.8621199727058411
Rice-RAPID:NVIDIA A40:tensorflow 2.9.1-gpu	0.8628799915313721	0.8525599837303162	0 8678799867630005	0 8515599966049194	0.8679999709129333
Rice-RAPID:NVIDIA A40:tensorflow 2.9.1-gpu	0.8613200187683105	0.8626000285148621	0 8573200106620789	0 8610799908638000	0 8649200201034546
Rice-RAPID:NVIDIA A40 tensorflow 2.9 1-gpu	0.8675600290298462	0.8675600290298462	0.8675600290298462	0.8675600290298462	0.8675600290298462
Rice-RAPID:NVIDIA A40:tensorflow_22.06	0.8658400177955627	0.8658400177955627	0.8658400177955627	0.8658400177955627	0.8658400177955627
Rice-RAPID:NVIDIA A40:tensorflow_22.00	0.8658400177955627	0.8658400177955627	0.8658400177955627	0.8658400177955627	0.8658400177955627
Rice-RAPID:NVIDIA A40:tensorflow 22.06	0.8658400177955627	0.8658400177955627	0.8658400177955627	0.8658400177955627	0.8658400177955627
GP-ARGO-uark/NV/IDIA A100-40GB:tensorflow_22.00	0.8658000230789185	0.8658000230789185	0.8658000230789185	0.8658000230789185	0.8658000230789185
GP-ARGO-ku:NVIDIA A100-40GB:tensorflow_22.00	0.8658000230789185	0.8658000230789185	0.8658000230789185	0.0050000230709105	0.8658000230789185
GP ARGO sdsu:NV/DIA A100-40GB tensorflow_22.00	0.8658000230780185	0.8658000230780185	0.8658000230780185	0.8658000230780185	0.0000000200709100
GP ARGO-bit. NVIDIA A100-40GB:tensorflow_22.00	0.8658000230780185	0.8658000230780185	0.8658000230780185	0.8658000230780185	0.0000000200709100
GP ARGO oru:NVIDIA A100-40GB tensorflow_22.00	0.8658000230789185	0.8658000230789185	0.8658000230789185	0.8658000230789185	0.0050000230709105
CR ARCO und NVIDIA A100-40 GB.tensorflow_22.00	0.8658000230780185	0.8658000230780185	0.8658000230780185	0.8658000230780185	0.0000000200709100
CP APGO langston:NV/IDIA A100 40GP:tonsorflow, 22.06	0 8658000230780185	0.8658000230780185	0.8658000230780185	0.8658000230780185	0 8658000230780185

Distantional OTM --- IMDD ----

Run Number

SAN DIEGO

SUPERCOMPUTER CENTER

Tolerance for Erroneous Conclusions: Low

Running nnUNet with Medical Imaging

SDSC SAN DIEGO DISCOMPUTER CENTER DISCOMPUTER CENTER

Tolerance for Erroneous Conclusions: High Image classification

Find the four-leafed clover \rightarrow

187683105	0.8626000285148621	0.8573200106620789	0.8610799908638000	0.864920020
915313721	0.8525599837303162	0.8678799867630005	0.8515599966049194	0.867999970
276374817	0.8572800159454346	0.8664399981498718	0.8625199794769287	0.862119972
826049805	0.8642799854278564	0.8643199801445007	0.8637199997901917	0.862919986
908638000	0.8507199883460999	0.8378000259399414	0.8429200053215027	0.857400000
108718872	0.8612400293350220	0.8637199997901917	0.8675600290298462	0.867839992
786567688	0.8600000143051147	0.8575999736785889	0.8620799779891968	0.835240006
290298462	0.8675600290298462	0.8675600290298462	0.8675600290298462	0.867560029
204086304	0.8561199903488159	0.8648800253868103	0.8633199930191040	0.862119972
290298462	0.8675600290298462	0.8675600290298462	0.8675600290298462	0.867560029
830055237	0.8628799915313721	0.8389199972152710	0.8572400212287903	0.852760016
857330322	0.8658800125122070	0.8632799983024597	0.8652399778366089	0.843840003
012779236	0.8557199835777283	0.8619599938392639	0.8493199944496155	0.809239983
214385986	0.8543199896812439	0.8555999994277954	0.8573200106620789	0.85979998
811172485	0.8661999702453613	0.8315600156784058	0.8641200065612793	0.845640003
716758728	0.8642399907112122	0.8579599857330322	0.8552399873733521	0.862680017
885559082	0.8166800141334534	0.8648800253868103	0.8613200187683105	0.85868000
199508667	0.8500400185585022	0.8637599945068359	0.8516399860382080	0.861039996
983024597	0.8689600229263306	0.8511599898338318	0.8640800118446350	0.855359971

Experimentation Conclusions

- There are sources of irreproducibility that cannot be controlled for.
- Running the experiment in multiple heterogeneous environments during the analysis stage will help validate the conclusions and also help validate the conclusions will be reproducible.
- Having resources like the Open Science Grid and access to Cloud resources can be used to improve reproducibility.

Takeaways

- AI/ML under constant development: new tools, new implementations of algorithms, new versions up and down the stack (operating system, framework, processors)
 Consider usage carefully for application with impact
- Commitment to repeatability needed with AI/ML
 - Kevin repeats each experiment 10x
- For reproducibility, must document all applicable 'implementation factors'
 - Publishers should consider guidelines for AI/ML driven work

SAN DIEGO SUPERCOMPUTER CENTER

- Nanopublications to cite for replicable documentation
- Awareness building needed
 - Especially when data with embedded bias is used in ML

Contact

Kevin Coakley - <u>kcoakley@sdsc.edu</u> Christine Kirkpatrick - <u>christine@sdsc.edu</u>

Sources of Irreproducibility in Machine Learning: A Review https://arxiv.org/abs/2204.07610

